Try to enter your VIN above and see what we have for you.
JTMABABA2PA022693-2023-subaru-solterra-0
BADVIN vehicle history report for

2023 SUBARU SOLTERRAVIN: JTMABABA2PA022693

Get FULL ACCESS to the vehicle history report and see all blurred info.
We accept PayPal and Stripe. Money-back guarantee if not satisfied.
Read 206+ reviews from our customers who used BADVIN to avoid buying junk vehicles.
Historical Records
events
Photos
12 images
Sales History
1 records
Sale Prices
1 records
VIN Decoder
51 entries

Historical Records

Historical records may include service and maintenance records, title status (clean, junk, salvage), insurance records, number of owners, registration events and states, and other information.
You can find more information about historical records in BADVIN reports and see more examples here.
Available historical records for VIN JTMABABA2PA022693
Latest reported mileage: 233 mi
Below you can see some examples of what these records could look like.
2023-06-26
a year ago
26,013 mi
Vehicle sold
MILEAGE INCONSISTENCY
2022-01-07
2 years ago
7,043 mi
TOTAL LOSS VEHICLE
Vehicle declared a total loss by an insurance company
Collision damage reported
2021-08-12
3 years ago
25,553 mi
Sold as a BMW Certified Pre-Owned Vehicle

Sale Record

Sale Date
3 days ago
Latest Price
Odometer
4382 mi
Location
Somersworth, NH, 03878
Year2023
ODO 8821 mi
ConditionHidden text
SellerHidden text
LocationSomersworth, NH, 03878
Date
appeared 3 days ago
latest price $9018
Sale Website Typeclassifieds
Notes
Hidden text
sale information provided by user #153754
All photos above are REAL and display ACTUAL car. After you get the report you will see full resolution photos.

Tech Specs
Body StyleSUV
ColorBlack
Color (Interior)Black
TransmissionAutomatic
EngineUnspecified
CylindersElectric
DriveAWD
Fuel TypeElectric

Extra Features

Standard Features
All these features are based on a model in general. This specific vehicle may differ.

VIN Decoder — 51 records

Active Safety System
Anti-lock Braking System (ABS)

Anti-lock Braking System (ABS) means a portion of a service brake system that automatically controls the degree of rotational wheel slip during braking by: (1) Sensing the rate of angular rotation of the wheels; (2) Transmitting signals regarding the rate of wheel angular rotation to one or more controlling devices that interpret those signals and generate responsive controlling output signals; and (3) Transmitting those controlling signals to one or more modulator devices that adjust brake actuating forces in response to those signals.

Standard
Auto-Reverse System for Windows and Sunroofs

An auto-reverse system enables power windows and sunroofs on motor vehicles to automatically reverse direction when such power windows and panels detect an obstruction. This feature can prevent children and others from being trapped, injured, or killed by the power windows and sunroofs.

Standard
Automatic Pedestrian Alerting Sound (for Hybrid and EV only)

Electric vehicle warning sounds are a series of sounds designed to alert pedestrians to the presence of electric drive vehicles such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs) travelling at low speeds. Vehicles operating in all-electric mode produce less noise than traditional combustion engine vehicles and can make it more difficult for pedestrians, the blind, cyclists, and others to be aware of their presence.

Standard
Electronic Stability Control (ESC)

ESC is a computerized technology that improves a vehicle's stability by detecting and reducing loss of traction (skidding). When ESC detects loss of steering control, it automatically applies the brakes to help steer the vehicle in the driver's intended direction. Braking is automatically applied to wheels individually, such as the outer front wheel to counter oversteer, or the inner rear wheel to counter understeer. Some ESC systems also reduce engine power until control is regained.

Standard
Event Data Recorder (EDR)

An EDR is a device installed in motor vehicles to record technical vehicle and occupant information for a brief period before, during, and after a triggering event, typically a crash or near-crash event. Sometimes referred to as "black-box" data, these data or event records can be valuable when analyzing and reconstructing crashes.

Standard
Keyless Ignition

A keyless ignition system permits starting a car without a physical key being inserted into an ignition. Instead, a small device known as a "key fob" transmits a code to a computer in the vehicle when the fob is within a certain close range. When the coded signal matches the code embedded in the vehicle's computer, a number of systems within the car are activated, including the starter system. This allows the car to be started by simply pressing a button on the dashboard while the key fob is left in a pocket or a purse. The vehicle is usually shut down by pushing the same button.

Standard
Tire Pressure Monitoring System (TPMS) Type

A TPMS is an electronic system designed to monitor the air pressure inside the pneumatic tires on various types of vehicles. TPMS can be divided into two different types - direct and indirect. Direct TPMS employ pressure sensors on each wheel, either internal or external. The sensors physically measure the tire pressure in each tire and report it to the vehicle's instrument cluster or a corresponding monitor. Indirect TPMS does not use physical pressure sensors but measure air pressures by monitoring individual wheel rotational speeds and other signals available outside of the tire itself.

Direct
Traction Control

When the traction control computer detects a driven wheel or wheels spinning significantly faster than another, it invokes an electronic control unit to apply brake friction to wheels spinning due to loss of traction. This braking action on slipping wheels will cause power transfer to the wheels with traction due to the mechanical action within the differential.

Standard
Active Safety System / 911 Notification
Automatic Crash Notification (ACN) / Advanced Automatic Crash Notification (AACN)

An ACN system notifies emergency responders that a crash has occurred and provides its location.

Standard
Active Safety System / Backing Up and Parking
Backup Camera

A backup camera, also known as a rearview video system, helps prevent back-over crashes and protects our most vulnerable people - children and senior citizens - by providing an image of the area behind the vehicle. A backup camera helps the driver see behind the vehicle while in reverse.

Standard
Parking Assist

A parking assist system uses computer processors, back up cameras, surround-view cameras, and sensors to assist with steering and other functions during parking. Drivers may be required to accelerate, brake, or select gear position. Some systems are capable of parallel and perpendicular parking. Drivers must constantly supervise this support feature and maintain responsibility for parking.

Standard
Rear Cross Traffic Alert

A rear cross traffic alert system warns the driver of a potential collision, while in reverse, which may be outside the view of the backup camera.

Standard
Active Safety System / Forward Collision Prevention
Crash Imminent Braking (CIB)

A CIB system is an automatic emergency braking system designed to detect an impending forward crash with another vehicle. CIB systems automatically apply the brakes in a crash imminent situation to slow or stop the vehicle, avoiding the crash or reducing its severity, if the driver does not brake in response to a forward collision alert.

Standard
Dynamic Brake Support (DBS)

A DBS system is an automatic emergency braking system designed to detect an impending forward crash with another vehicle. DBS systems automatically supplement the driver's braking in an effort to avoid a crash if the driver does not brake hard enough to avoid it.

Standard
Forward Collision Warning (FCW)

An FCW system monitors a vehicle's speed, the speed of the vehicle in front of it, and the distance between the vehicles. If the vehicles get too close due to the speed of either vehicle, the FCW system will warn the driver of the rear vehicle of an impending crash so that the driver can apply the brakes or take evasive action, such as steering, to prevent a potential crash. FCW systems provide an audible, visual, or haptic warning, or any combination thereof, to alert the driver of an FCW-equipped vehicle of a potential collision.

Standard
Pedestrian Automatic Emergency Braking (PAEB)

A PAEB system provides automatic braking for vehicles when pedestrians are in front of the vehicle and the driver has not acted to avoid a crash.

Standard
Active Safety System / Lane and Side Assist
Blind Spot Warning (BSW)

BSW alerts drivers with an audio or visual warning if there are vehicles in adjacent lanes that the driver may not see when making a lane change.

Standard
Lane Departure Warning (LDW)

An LDW system monitors lane markings and alerts the driver if their vehicle drifts out of their lane without a turn signal or any control input indicating the lane departure is intentional. An audio, visual or other alert warns the driver of the unintentional lane shift so the driver can steer the vehicle back into its lane.

Standard
Lane Keeping Assistance (LKA)

An LKA system prevents a driver from unintentionally drifting out of the intended travel lane. LKA systems use information provided by Lane Departure Warning (LDW) system sensors to determine whether a vehicle is about to unintentionally move out of its lane of travel. If so, LKA activates and corrects the steering, brakes or accelerates one or more wheels, or does both, resulting in the vehicle returning to its intended lane of travel.

Standard
Active Safety System / Lighting Technologies
Daytime Running Light (DRL)

DRL is an automotive lighting system on the front of a vehicle or bicycle, that automatically switches on when the vehicle is in drive, and emits white, yellow, or amber light to increase the conspicuity of the vehicle during daylight conditions.

Standard
Headlamp Light Source

A headlamp light source provides a distribution of light designed to provide adequate forward and lateral illumination with limits on light directed towards the eyes of other road users, to control glare. This beam is intended for use whenever other vehicles are present ahead. Halogen, high-Intensity discharge (HID), light-emitting diode (LED), and laser are the most common headlights on the market.

LED
Semiautomatic Headlamp Beam Switching

A semi-automatic headlamp beam switching device provides automatic or manual control of beam switching at the option of the driver. When the control is automatic, the headlamps switch from the upper beam to the lower beam when illuminated by the headlamps on an approaching car and switch back to the upper beam when the road ahead is dark. When the control is manual, the driver may obtain either beam manually regardless of the condition of lights ahead of the vehicle.

Standard
Engine
Electrification Level

Electrification level defines to what level the vehicle is powered by electric system. The common electric system configurations are mild hybrid, strong hybrid, plug-in hybrid, battery electric, and fuel cell vehicles.

(1) Mild hybrid is the system such as 12-volt start-stop or 48-volt belt integrator starter generator (BISG) system that uses an electric motor to add assisting power to the internal combustion engine. The system has features such as stop-start, power assist, and mild level of generative braking features.

(2) Strong hybrid systems, in vehicles such as the Toyota Prius, mainly consist of motors, conventional gasoline engine, and battery, but the source of electrical charge for the battery power is provided by the conventional engine and/or regenerative braking.

(3) Plug-in hybrid systems, in vehicles such as the Toyota Rav4 Prime, mainly consist of motors, conventional gasoline engine and battery. Plug-in hybrid vehicles are like strong hybrids, but they have a larger battery pack and can be charged with an external source of electricity by electric vehicle supply equipment (EVSE).

(4) Battery electric vehicles (BEV), such as the Tesla Model S or Nissan Leaf, have only a battery and electrical motor components and use electricity as the only power source.

(5) Fuel cell electric vehicles (FCEV) use full electric drive platforms but consume electricity generated by onboard fuel cells and hydrogen fuel.

BEV (Battery Electric Vehicle)
Engine Model

Engine model is a name that a manufacturer applies to a family of engine.

1YM Motor
Engine Power (kW)

This field stores engine power in kilowatts (kW).

80
Fuel Type - Primary

Fuel type defines the fuel used to power the vehicle. For vehicles that have two power sources, such as plug-in hybrid vehicle, both primary fuel type and secondary fuel type will be provided.

Electric
Other Engine Info

This is a catch-all field for storing additional engine information that does not fit in any of the other engine fields.

Motor Type & Maximum Output: Front/Rear: 1YM Motor, 80kW
Exterior / Body
Body Class

Body Class presents the body type based on 49 CFR 565.12(b): "Body type means the general configuration or shape of a vehicle distinguished by such characteristics as the number of doors or windows, cargo-carrying features and the roofline (e.g., sedan, fastback, hatchback)." Definitions are not provided for individual body types in the regulation.

Sport Utility Vehicle (SUV)/Multi-Purpose Vehicle (MPV)
Doors

This is a numerical field to store the number of doors on a vehicle.

5
Exterior / Dimension
Gross Vehicle Weight Rating From

Gross vehicle weight rating (GVWR) is the maximum operating weight of a vehicle including the vehicle's chassis, body, engine, engine fluids, fuel, accessories, driver, passengers and cargo, but excluding that of the trailers. Per 49 CFR 565.15, Class 1 is further broken down to Class A-D; Class 2 is further broken down to Class E-H. This field captures the lower bound of GVWR range for the vehicle.

Class 1D: 5,001 - 6,000 lb (2,268 - 2,722 kg)
General
Make

Per 49 CFR 565, Make is a name that a manufacturer applies to a group of vehicles or engines.

SUBARU
Manufacturer Name
Name of the vehicle manufacturer.
TOYOTA MOTOR CORPORATION
Model

Per 49 CFR 565, Model means a name that a manufacturer applies to a family of vehicles of the same type, make, line, series and body type.

Solterra
Model Year

If the model year (MY) is supplied when the VIN is decoded, such as from a crash report or a vehicle registration record, the MY value will be the supplied MY, even if the MY decoded from the VIN differs from the supplied MY. If the MY is not supplied when the VIN is decoded, the MY value will be decoded from the 10th character in the VIN.

2023
Plant City

This data element captures the city of the manufacturing plant where the manufacturer affixes the VIN.

TOYOTA CITY
Plant Company Name

This data element captures the name of the company that owns the manufacturing plant where the manufacturer affixes the VIN.

Toyota Motor Corporation - Motomachi Plant
Plant Country

This data element captures the country of the manufacturing plant where the manufacturer affixes the VIN.

JAPAN
Plant State

This data element captures the State or Province name within the Plant Country of the manufacturing plant where the manufacturer affixes the VIN.

AICHI
Series

Per 49 CFR 565, Series means a name that a manufacturer applies to a subdivision of a "line" denoting price, size or weight identification and that is used by the manufacturer for marketing purposes.

15 Series
Series2

This data element captures additional information about series of the vehicle.

Wagon Body Style
Vehicle Type

This field defines the type of the vehicle based on the World Manufacturer Identifier (WMI).

MULTIPURPOSE PASSENGER VEHICLE (MPV)
Internal
NCSA Body Type

An internal NHTSA field to capture the body type of the vehicle.

Compact Utility (Utility Vehicle Categories "Small" and "Midsize")
NCSA Make

An internal NHTSA field to capture the Make of the vehicle.

Subaru
NCSA Model

An internal NHTSA field to capture the Model of the vehicle.

Other (light truck)
Mechanical / Drivetrain
Drive Type

Drive type stores information about vehicle drivetrain configuration. The most common drive types for passenger cars, crossover vehicles, and pickup trucks are front-wheel drive (FWD), rear-wheel drive (RWD), all-wheel drive (AWD), and 4-wheel drive (4WD).

4WD/4-Wheel Drive/4x4
Passive Safety System
Other Restraint System Info

Other Restraint Info field is used to code additional information about restraint system that cannot be coded in any other restraint fields.

Seat Belt : All seats
Seat Belt Type

This field describes the type of seat belt, such as manual or automatic. Automatic seat belts automatically close over riders in a vehicle. Automatic seat belts were mainly used in some older model GM, Nissan, and Honda vehicles and are rarely seen now.

Manual
Passive Safety System / Air Bag Location
Curtain Air Bag Locations

This field captures the location of curtain air bags. Curtain air bags are side air bags that protect the head.

1st and 2nd Rows
Front Air Bag Locations

This field captures the location of frontal air bags. Frontal air bags are generally designed to deploy in "moderate to severe" frontal or near-frontal crashes.

1st Row (Driver and Passenger)
Knee Air Bag Locations

This field captures the location of knee air bags, which deploy from a car's lower dashboard, are meant to distribute impact forces on an occupant's legs in the case of a crash, thereby reducing leg injuries.

1st Row (Driver and Passenger)
Side Air Bag Locations

This field captures the location of side air bags, typically designed for three areas of added protection: chest/torso, head, or both.

1st Row (Driver and Passenger)
Get FULL ACCESS to the vehicle history report and see all blurred info.
We accept PayPal and Stripe. Money-back guarantee if not satisfied.
Read 206+ reviews from our customers who used BADVIN to avoid buying junk vehicles.

Testimonials from our customers

Was about to buy a used 2016 Camry but decided to get the badvin report first. Turns out the car had been in a serious crash and was declared a total loss by insurance, even tho carfax showed it as clean! Dodged a bullet on that one. ty badvin
As a used car dealer, I rely on badvin.org for checking every vehicle I'm considering purchasing at auction. The comprehensive reports give me peace of mind and help me avoid problem cars. Photos of past sales have saved me from overpaying many times. Worth every penny!
I import used luxury cars from US auctions to resell in Russia. The vehicle history reports from badVIN are essential for avoiding problem cars. For a BMW I was bidding on, it uncovered a salvage title from flood damage that other reports missed! That alone pays for the service.
I buy rebuilt title cars at copart to fix and resell. was hoping BadVin reports wud have more detail on damage history to help me value cars before bidding, Carfax is better for that. but for clean title vehicles it seems pretty useful
Compare to other 2023 SUBARU SOLTERRA
JTMABABA5PA003149-2023-subaru-solterra
2023 SUBARU SOLTERRA
2 days ago, 4,775 mi
VIN JTMABABA5PA003149
JTMABABA1PA023933-2023-subaru-solterra
2023 SUBARU SOLTERRA
2 days ago, 4,496 mi
VIN JTMABABA1PA023933
JTMABABA4PA027278-2023-subaru-solterra
2023 SUBARU SOLTERRA
8 days ago, 16,056 mi
VIN JTMABABA4PA027278
JTMABABA7PA021636-2023-subaru-solterra
2023 SUBARU SOLTERRA
2 days ago, 2,307 mi
VIN JTMABABA7PA021636
JTMABABA7PA023810-2023-subaru-solterra
2023 SUBARU SOLTERRA
2 days ago, 16,777 mi
VIN JTMABABA7PA023810
JTMABABA4PA027202-2023-subaru-solterra
2023 SUBARU SOLTERRA
2 days ago, 6,508 mi
VIN JTMABABA4PA027202
JTMABABA5PA004169-2023-subaru-solterra
2023 SUBARU SOLTERRA
2 days ago, 8,660 mi
VIN JTMABABA5PA004169
JTMABABA7PA025587-2023-subaru-solterra
2023 SUBARU SOLTERRA
6 days ago, 24,720 mi
VIN JTMABABA7PA025587
JTMABABA7PA023063-2023-subaru-solterra
2023 SUBARU SOLTERRA
8 days ago, 2,417 mi
VIN JTMABABA7PA023063
JTMABABA8PA023654-2023-subaru-solterra
2023 SUBARU SOLTERRA
6 days ago, 15,423 mi
VIN JTMABABA8PA023654
JTMABABA5PA026558-2023-subaru-solterra
2023 SUBARU SOLTERRA
8 days ago, 30,306 mi
VIN JTMABABA5PA026558
JTMABABA5PA026043-2023-subaru-solterra
2023 SUBARU SOLTERRA
8 days ago, 5,935 mi
VIN JTMABABA5PA026043
Other vehicles sales records
1FTEX1C87AFB04153-2010-ford-f-150
2010 FORD F-150
a month ago, 110,594 mi
VIN 1FTEX1C87AFB04153
1GCVKREC7HZ210870-2017-chevrolet-silverado-1500
2017 CHEVROLET SILVERADO 1500
4 hours ago, 69,345 mi
VIN 1GCVKREC7HZ210870
5TFSZ5AN3HX119816-2017-toyota-tacoma
2017 TOYOTA TACOMA
4 hours ago, 119,759 mi
VIN 5TFSZ5AN3HX119816
3GCUYGED4NG180214-2022-chevrolet-silverado-1500
2022 CHEVROLET SILVERADO 1500
4 hours ago, 31,244 mi
VIN 3GCUYGED4NG180214
1FTEW1EG8HKD59032-2017-ford-f-150
2017 FORD F-150
4 hours ago, 133,478 mi
VIN 1FTEW1EG8HKD59032
1C6RR7PT8HS689735-2017-ram-1500
2017 RAM 1500
4 hours ago, 110,613 mi
VIN 1C6RR7PT8HS689735
1C6SRFJT8NN381009-2022-ram-1500
2022 RAM 1500
4 hours ago, 65,430 mi
VIN 1C6SRFJT8NN381009
1D7RB1CT5AS213597-2010-dodge-ram-1500
2010 DODGE RAM 1500
a month ago, 130,035 mi
VIN 1D7RB1CT5AS213597
1N6AD0EV1HN737457-2017-nissan-frontier
2017 NISSAN FRONTIER
4 hours ago, 87,172 mi
VIN 1N6AD0EV1HN737457
1C6SRFFT7NN447817-2022-ram-1500
2022 RAM 1500
4 hours ago, 12,029 mi
VIN 1C6SRFFT7NN447817
1GCSKPE31AZ109224-2010-chevrolet-silverado-1500
2010 CHEVROLET SILVERADO 1500
a month ago, 141,746 mi
VIN 1GCSKPE31AZ109224
3GCPCREC3HG432540-2017-chevrolet-silverado-1500
2017 CHEVROLET SILVERADO 1500
4 hours ago, 112,808 mi
VIN 3GCPCREC3HG432540
Frequently asked questions
VIN decoding can prevent fraud in the sale of 2023 SUBARU SOLTERRA vehicles by ensuring the vehicle's details match those recorded officially, thus confirming its identity and legality.
The window sticker is important for new car buyers as it ensures transparency about the vehicle's origins, features, and costs, helping consumers make informed decisions.
Sales prices from past transactions may be documented in our reports, providing a price history that aids in determining current market value, if such data is available.
A VIN decoder can uncover discrepancies such as mismatches in reported and actual vehicle specifications, including year, model, and equipment, which can indicate potential fraud or errors in listings.
A replacement window sticker for a used 2023 SUBARU SOLTERRA can sometimes be obtained through the manufacturer or a third-party provider that recreates official labels based on vehicle specifics.
Economic downturns can lead to decreased demand and lower resale values for vehicles, as buyers may defer purchasing vehicles or opt for less expensive alternatives.
Buying a used car can be a great value, especially if the vehicle is part of a Certified Pre-Owned program and has been well-maintained and lightly used.
The information on vehicles provided here is supplied by third parties; BADVIN.ORG is not responsible for the accuracy of any information. BADVIN.ORG provides all service and materials without representations or warranties of any kind, either expressed or implied. Use BADVIN search and reports along with certified vehicle inspection and test drive. See Terms of Use for more details. All other logos, brands and designated trademarks are the property of their respective holders.