Try to enter your VIN above and see what we have for you.
JN8AZ2AC4P9490967-2023-infiniti-qx80-0
BADVIN vehicle history report for

2023 INFINITI QX80VIN: JN8AZ2AC4P9490967

Get FULL ACCESS to the vehicle history report and see all blurred info.
We accept PayPal and Stripe. Money-back guarantee if not satisfied.
Read 206+ reviews from our customers who used BADVIN to avoid buying junk vehicles.
Historical Records
events
Photos
30 images
Sales History
2 records
Sale Prices
2 records
VIN Decoder
49 entries
Market report
Price analytics

Historical Records

Historical records may include service and maintenance records, title status (clean, junk, salvage), insurance records, number of owners, registration events and states, and other information.
You can find more information about historical records in BADVIN reports and see more examples here.
Available historical records for VIN JN8AZ2AC4P9490967
Latest reported mileage: 188 mi
Below you can see some examples of what these records could look like.
2023-07-08
a year ago
74,258 mi
SALVAGE TITLE/CERTIFICATE ISSUED
2022-01-13
2 years ago
6,918 mi
Passed emissions inspection
2020-09-05
4 years ago
31,445 mi
Accident reported: minor damage with another motor vehicle
Damage to rear

Sale Record

Sale Date
4 months ago
Msrp
Odometer
2541 mi
Location
Willow Grove, PA, 19090
2023 INFINITI QX80 PREMIUM SELECT AWD
Year2023
ODO 5375 mi
SellerHidden text
Buy Now Price$8451
MSRP$2273
LocationWillow Grove, PA, 19090
Date
ended 4 months ago
Sale Website Typedealer auction
Notes
Hidden text
sale information provided by user #948517
All photos above are REAL and display ACTUAL car. After you get the report you will see full resolution photos.

Tech Specs
ColorTan
Color (Interior)Brown
TransmissionAutomatic
Engine8 Cylinder
Drive4WD
Fuel TypeGasoline

Standard Features
All these features are based on a model in general. This specific vehicle may differ.

Model Analytics & Market Report

We've analyzed more than 1,400 sales records of this model and here are some numbers.
The average price for new (MSRP) 2023 INFINITI QX80 in 2023 was $73,275.
The average price for used 2023 INFINITI QX80 nowadays in 2024 is $56,677 which is 77% from the original price.
Estimated mileage driven per year is 14,222 miles.
For this model we also have depreciation curve, photos, list of features and options, and other analytics.
Take a look at 2023 INFINITI QX80 model page in BADVIN vehicles catalog.

Depreciation

The graph below is a depreciation curve for 2023 INFINITI QX80. It shows how much this model looses per year in price. This analytics is calculated using sales records from BADVIN database.
The table below shows average price for used 2023 INFINITI QX80 in each year since the year of manufacturing, current year price and projected price in the future years.
You can scroll the table horizontally to see all columns.
YearAverage MileageAverage Price% Left% Lost
2023 MSRP0 mi$73,275100%0%
202314,222 mi$68,988+$4,287+5.85%94.15%5.85%
202428,444 mi$56,677+$12,311+17.85%77.35%22.65%
202542,666 mi$51,000+$5,677+10.02%69.6%30.4%
202656,888 mi$43,294+$7,706+15.11%59.08%40.92%
202771,110 mi$34,337+$8,957+20.69%46.86%53.14%
→ Visit 2023 INFINITI QX80 depreciation page to see full data.

Price vs Mileage

The graph below shows how mileage affects the price for 2023 INFINITI QX80. This data was calculated using sales records from BADVIN database.
The table below shows average price for used 2023 INFINITI QX80 by mileage and number of sales.
You can scroll the table horizontally to see all columns.
MileageAverage PriceSample Size
0 mi$62,49618 sales
5,000 mi$58,000201 sales
10,000 mi$56,988376 sales
15,000 mi$55,990244 sales
20,000 mi$53,90095 sales
25,000 mi$51,50052 sales
→ Visit 2023 INFINITI QX80 depreciation page to see full data.

VIN Decoder — 49 records

Active Safety System
Anti-lock Braking System (ABS)

Anti-lock Braking System (ABS) means a portion of a service brake system that automatically controls the degree of rotational wheel slip during braking by: (1) Sensing the rate of angular rotation of the wheels; (2) Transmitting signals regarding the rate of wheel angular rotation to one or more controlling devices that interpret those signals and generate responsive controlling output signals; and (3) Transmitting those controlling signals to one or more modulator devices that adjust brake actuating forces in response to those signals.

Standard
Auto-Reverse System for Windows and Sunroofs

An auto-reverse system enables power windows and sunroofs on motor vehicles to automatically reverse direction when such power windows and panels detect an obstruction. This feature can prevent children and others from being trapped, injured, or killed by the power windows and sunroofs.

Standard
Electronic Stability Control (ESC)

ESC is a computerized technology that improves a vehicle's stability by detecting and reducing loss of traction (skidding). When ESC detects loss of steering control, it automatically applies the brakes to help steer the vehicle in the driver's intended direction. Braking is automatically applied to wheels individually, such as the outer front wheel to counter oversteer, or the inner rear wheel to counter understeer. Some ESC systems also reduce engine power until control is regained.

Standard
Event Data Recorder (EDR)

An EDR is a device installed in motor vehicles to record technical vehicle and occupant information for a brief period before, during, and after a triggering event, typically a crash or near-crash event. Sometimes referred to as "black-box" data, these data or event records can be valuable when analyzing and reconstructing crashes.

Standard
Keyless Ignition

A keyless ignition system permits starting a car without a physical key being inserted into an ignition. Instead, a small device known as a "key fob" transmits a code to a computer in the vehicle when the fob is within a certain close range. When the coded signal matches the code embedded in the vehicle's computer, a number of systems within the car are activated, including the starter system. This allows the car to be started by simply pressing a button on the dashboard while the key fob is left in a pocket or a purse. The vehicle is usually shut down by pushing the same button.

Standard
Tire Pressure Monitoring System (TPMS) Type

A TPMS is an electronic system designed to monitor the air pressure inside the pneumatic tires on various types of vehicles. TPMS can be divided into two different types - direct and indirect. Direct TPMS employ pressure sensors on each wheel, either internal or external. The sensors physically measure the tire pressure in each tire and report it to the vehicle's instrument cluster or a corresponding monitor. Indirect TPMS does not use physical pressure sensors but measure air pressures by monitoring individual wheel rotational speeds and other signals available outside of the tire itself.

Direct
Traction Control

When the traction control computer detects a driven wheel or wheels spinning significantly faster than another, it invokes an electronic control unit to apply brake friction to wheels spinning due to loss of traction. This braking action on slipping wheels will cause power transfer to the wheels with traction due to the mechanical action within the differential.

Standard
Active Safety System / 911 Notification
Automatic Crash Notification (ACN) / Advanced Automatic Crash Notification (AACN)

An ACN system notifies emergency responders that a crash has occurred and provides its location.

Standard
Active Safety System / Backing Up and Parking
Backup Camera

A backup camera, also known as a rearview video system, helps prevent back-over crashes and protects our most vulnerable people - children and senior citizens - by providing an image of the area behind the vehicle. A backup camera helps the driver see behind the vehicle while in reverse.

Standard
Parking Assist

A parking assist system uses computer processors, back up cameras, surround-view cameras, and sensors to assist with steering and other functions during parking. Drivers may be required to accelerate, brake, or select gear position. Some systems are capable of parallel and perpendicular parking. Drivers must constantly supervise this support feature and maintain responsibility for parking.

Standard
Rear Automatic Emergency Braking
A rear automatic braking system uses sensors, like parking sensors and the backup camera, to detect objects behind the vehicle. If the system detects a potential collision while in reverse, it automatically applies the brakes if a crash is imminent.
Standard
Active Safety System / Forward Collision Prevention
Crash Imminent Braking (CIB)

A CIB system is an automatic emergency braking system designed to detect an impending forward crash with another vehicle. CIB systems automatically apply the brakes in a crash imminent situation to slow or stop the vehicle, avoiding the crash or reducing its severity, if the driver does not brake in response to a forward collision alert.

Standard
Forward Collision Warning (FCW)

An FCW system monitors a vehicle's speed, the speed of the vehicle in front of it, and the distance between the vehicles. If the vehicles get too close due to the speed of either vehicle, the FCW system will warn the driver of the rear vehicle of an impending crash so that the driver can apply the brakes or take evasive action, such as steering, to prevent a potential crash. FCW systems provide an audible, visual, or haptic warning, or any combination thereof, to alert the driver of an FCW-equipped vehicle of a potential collision.

Standard
Pedestrian Automatic Emergency Braking (PAEB)

A PAEB system provides automatic braking for vehicles when pedestrians are in front of the vehicle and the driver has not acted to avoid a crash.

Standard
Active Safety System / Lane and Side Assist
Blind Spot Intervention (BSI)

BSI helps prevent a collision with a vehicle in the driver's blind spot. If the driver ignores the blind spot warning and starts to change to a lane where there's a vehicle, the system activates and automatically applies light braking pressure, or provides steering input, to guide the vehicle back into the original lane. The system monitors for vehicles in the driver's blind spot using rear-facing cameras or proximity sensors.

Standard
Blind Spot Warning (BSW)

BSW alerts drivers with an audio or visual warning if there are vehicles in adjacent lanes that the driver may not see when making a lane change.

Standard
Lane Departure Warning (LDW)

An LDW system monitors lane markings and alerts the driver if their vehicle drifts out of their lane without a turn signal or any control input indicating the lane departure is intentional. An audio, visual or other alert warns the driver of the unintentional lane shift so the driver can steer the vehicle back into its lane.

Standard
Active Safety System / Lighting Technologies
Daytime Running Light (DRL)

DRL is an automotive lighting system on the front of a vehicle or bicycle, that automatically switches on when the vehicle is in drive, and emits white, yellow, or amber light to increase the conspicuity of the vehicle during daylight conditions.

Standard
Headlamp Light Source

A headlamp light source provides a distribution of light designed to provide adequate forward and lateral illumination with limits on light directed towards the eyes of other road users, to control glare. This beam is intended for use whenever other vehicles are present ahead. Halogen, high-Intensity discharge (HID), light-emitting diode (LED), and laser are the most common headlights on the market.

LED
Semiautomatic Headlamp Beam Switching

A semi-automatic headlamp beam switching device provides automatic or manual control of beam switching at the option of the driver. When the control is automatic, the headlamps switch from the upper beam to the lower beam when illuminated by the headlamps on an approaching car and switch back to the upper beam when the road ahead is dark. When the control is manual, the driver may obtain either beam manually regardless of the condition of lights ahead of the vehicle.

Standard
Active Safety System / Maintaining Safe Distance
Adaptive Cruise Control (ACC)

ACC automatically adjusts the vehicle's speed to keep a pre-set distance from the vehicle in front of it.

Standard
Engine
Displacement (CC)

Engine displacement (in cubic centimeters) is the volume swept by all the pistons inside the cylinders of a reciprocating engine in a single movement from top dead center to bottom dead center.

5600.0
Displacement (CI)

Engine displacement (in cubic inches) is the volume swept by all the pistons inside the cylinders of a reciprocating engine in a single movement from top dead center to bottom dead center.

341.73296693050
Displacement (L)

Engine displacement (in liters) is the volume swept by all the pistons inside the cylinders of a reciprocating engine in a single movement from top dead center to bottom dead center.

5.6
Fuel Type - Primary

Fuel type defines the fuel used to power the vehicle. For vehicles that have two power sources, such as plug-in hybrid vehicle, both primary fuel type and secondary fuel type will be provided.

Gasoline
Exterior / Body
Body Class

Body Class presents the body type based on 49 CFR 565.12(b): "Body type means the general configuration or shape of a vehicle distinguished by such characteristics as the number of doors or windows, cargo-carrying features and the roofline (e.g., sedan, fastback, hatchback)." Definitions are not provided for individual body types in the regulation.

Sport Utility Vehicle (SUV)/Multi-Purpose Vehicle (MPV)
Doors

This is a numerical field to store the number of doors on a vehicle.

4
Exterior / Dimension
Gross Vehicle Weight Rating From

Gross vehicle weight rating (GVWR) is the maximum operating weight of a vehicle including the vehicle's chassis, body, engine, engine fluids, fuel, accessories, driver, passengers and cargo, but excluding that of the trailers. Per 49 CFR 565.15, Class 1 is further broken down to Class A-D; Class 2 is further broken down to Class E-H. This field captures the lower bound of GVWR range for the vehicle.

Class 2F: 7,001 - 8,000 lb (3,175 - 3,629 kg)
General
Make

Per 49 CFR 565, Make is a name that a manufacturer applies to a group of vehicles or engines.

INFINITI
Manufacturer Name
Name of the vehicle manufacturer.
NISSAN MOTOR COMPANY, LTD
Model

Per 49 CFR 565, Model means a name that a manufacturer applies to a family of vehicles of the same type, make, line, series and body type.

QX80
Model Year

If the model year (MY) is supplied when the VIN is decoded, such as from a crash report or a vehicle registration record, the MY value will be the supplied MY, even if the MY decoded from the VIN differs from the supplied MY. If the MY is not supplied when the VIN is decoded, the MY value will be decoded from the 10th character in the VIN.

2023
Plant Company Name

This data element captures the name of the company that owns the manufacturing plant where the manufacturer affixes the VIN.

Nissan Shatai Kyushu Plant
Plant Country

This data element captures the country of the manufacturing plant where the manufacturer affixes the VIN.

JAPAN
Plant State

This data element captures the State or Province name within the Plant Country of the manufacturing plant where the manufacturer affixes the VIN.

FUKUOKA
Series2

This data element captures additional information about series of the vehicle.

Wagon Body Style
Trim

Trim levels further identify a vehicle by a particular set of special features. Higher trim levels either will add to the features of the base (entry-level model), or replace them with something else.

Base
Vehicle Type

This field defines the type of the vehicle based on the World Manufacturer Identifier (WMI).

MULTIPURPOSE PASSENGER VEHICLE (MPV)
Internal
NCSA Body Type

An internal NHTSA field to capture the body type of the vehicle.

Large utility (ANSI D16.1 Utility Vehicle Categories and "Full Size" and "Large")
NCSA Make

An internal NHTSA field to capture the Make of the vehicle.

Infiniti
NCSA Model

An internal NHTSA field to capture the Model of the vehicle.

QX80
Mechanical / Brake
Brake System Description

This field provides additional details about the brake system.

4-Wheel ABS
Mechanical / Drivetrain
Drive Type

Drive type stores information about vehicle drivetrain configuration. The most common drive types for passenger cars, crossover vehicles, and pickup trucks are front-wheel drive (FWD), rear-wheel drive (RWD), all-wheel drive (AWD), and 4-wheel drive (4WD).

4WD/4-Wheel Drive/4x4
Passive Safety System
Other Restraint System Info

Other Restraint Info field is used to code additional information about restraint system that cannot be coded in any other restraint fields.

Front: 3-Point Manual Belts / Mid & Rear: 3-Point Manual Belts (Outboard/Center)
Seat Belt Type

This field describes the type of seat belt, such as manual or automatic. Automatic seat belts automatically close over riders in a vehicle. Automatic seat belts were mainly used in some older model GM, Nissan, and Honda vehicles and are rarely seen now.

Manual
Passive Safety System / Air Bag Location
Curtain Air Bag Locations

This field captures the location of curtain air bags. Curtain air bags are side air bags that protect the head.

1st and 2nd and 3rd Rows
Front Air Bag Locations

This field captures the location of frontal air bags. Frontal air bags are generally designed to deploy in "moderate to severe" frontal or near-frontal crashes.

1st Row (Driver and Passenger)
Knee Air Bag Locations

This field captures the location of knee air bags, which deploy from a car's lower dashboard, are meant to distribute impact forces on an occupant's legs in the case of a crash, thereby reducing leg injuries.

1st Row (Driver and Passenger)
Side Air Bag Locations

This field captures the location of side air bags, typically designed for three areas of added protection: chest/torso, head, or both.

1st Row (Driver and Passenger)
Get FULL ACCESS to the vehicle history report and see all blurred info.
We accept PayPal and Stripe. Money-back guarantee if not satisfied.
Read 206+ reviews from our customers who used BADVIN to avoid buying junk vehicles.

Testimonials from our customers

Ich hätte fast einen 2017 Mercedes-Benz C300 gekauft, bis der Bad Vin-Bericht zeigte, dass er als durch Überschwemmung beschädigt gemeldet wurde. Die detaillierten Schadensaufzeichnungen haben mich vor einem großen Fehler bewahrt!
Was shopping for a used Range Rover and found one that seemed suspiciously cheap. The badVIN report revealed it had been in a major front end collision, with photos showing the damage. Steered clear of that one and saved myself a ton of headaches!!
Purchased a badvin report before buying a used Lexus RX 350. It revealed a minor accident the seller hadn't mentioned. I still bought the car but used the info to negotiate a lower price. Well worth the cost for the leverage it gave me!
BadVin's vehicle history report is a must-have before buying any used vehicle. It's saved me from a few lemons over the years - cars that looked great on the surface but had hidden issues like accidents or title problems. Well worth the price.
Compare to other 2023 INFINITI QX80
JN8AZ2NE5E9063418-2014-infiniti-qx80
2014 INFINITI QX80
a month ago, 108,013 mi
buy now price $12,500
VIN JN8AZ2NE5E9063418
JN8AZ2NF1K9684451-2019-infiniti-qx80
2019 INFINITI QX80
a month ago, 85,924 mi
buy now price $35,900
VIN JN8AZ2NF1K9684451
JN8AZ2AE6R9326608-2024-infiniti-qx80
2024 INFINITI QX80
a month ago, 2,460 mi
buy now price $69,000
VIN JN8AZ2AE6R9326608
JN8AZ2NF9H9643106-2017-infiniti-qx80
2017 INFINITI QX80
a month ago, 135,622 mi
buy now price $16,500
VIN JN8AZ2NF9H9643106
JN8AZ2AF9N9743658-2022-infiniti-qx80
2022 INFINITI QX80
a month ago, 8,618 mi
VIN JN8AZ2AF9N9743658
JN8AZ2NF8H9647308-2017-infiniti-qx80
2017 INFINITI QX80
a month ago, 96,134 mi
buy now price $21,000
VIN JN8AZ2NF8H9647308
JN8AZ2ND4G9800988-2016-infiniti-qx80
2016 INFINITI QX80
a month ago, 47,521 mi
buy now price $21,500
VIN JN8AZ2ND4G9800988
JN8AZ2NE2H9158409-2017-infiniti-qx80
2017 INFINITI QX80
a month ago, 68,640 mi
buy now price $21,500
VIN JN8AZ2NE2H9158409
JN8AZ2ND3H9830386-2017-infiniti-qx80
2017 INFINITI QX80
a month ago, 150,639 mi
buy now price $13,100
VIN JN8AZ2ND3H9830386
JN8AZ2AD6P9875486-2023-infiniti-qx80
2023 INFINITI QX80
a month ago, 8,573 mi
VIN JN8AZ2AD6P9875486
JN8AZ2NE7H9159118-2017-infiniti-qx80
2017 INFINITI QX80
a month ago, 120,697 mi
buy now price $19,500
VIN JN8AZ2NE7H9159118
JN8AZ2ND7K9850342-2019-infiniti-qx80
2019 INFINITI QX80
a month ago, 53,479 mi
buy now price $33,700
VIN JN8AZ2ND7K9850342
Other vehicles sales records
SHHFK7H65LU203721-2020-honda-civic
2020 HONDA CIVIC
25 days ago, 37,765 mi
VIN SHHFK7H65LU203721
3C6RR7LT1JG227035-2018-ram-1500
2018 RAM 1500
24 days ago, 60,734 mi
VIN 3C6RR7LT1JG227035
1J4GS48K16C310570-2006-jeep-grand-cherokee
2006 JEEP GRAND CHEROKEE
25 days ago, 142,153 mi
VIN 1J4GS48K16C310570
1G1ZK57B99F259434-2009-chevrolet-malibu
2009 CHEVROLET MALIBU
24 days ago, 76,830 mi
VIN 1G1ZK57B99F259434
KNDJX3A52F7208943-2015-kia-soul
2015 KIA SOUL
25 days ago, 92,102 mi
VIN KNDJX3A52F7208943
JM1BN1W37H1133068-2017-mazda-mazda3
2017 MAZDA MAZDA3
25 days ago, 53,700 mi
VIN JM1BN1W37H1133068
1GCWGFCA7E1200064-2014-chevrolet-express
2014 CHEVROLET EXPRESS
25 days ago, 159,779 mi
VIN 1GCWGFCA7E1200064
5NPD74LF2KH486904-2019-hyundai-elantra
2019 HYUNDAI ELANTRA
25 days ago, 129,046 mi
VIN 5NPD74LF2KH486904
JNKBV61E87M729789-2007-infiniti-g35
2007 INFINITI G35
25 days ago, 174,903 mi
VIN JNKBV61E87M729789
KNDPNCAC2M7846623-2021-kia-sportage
2021 KIA SPORTAGE
24 days ago, 33,544 mi
VIN KNDPNCAC2M7846623
KMHCT4AE1GU146220-2016-hyundai-accent
2016 HYUNDAI ACCENT
25 days ago, 155,620 mi
VIN KMHCT4AE1GU146220
1C4RJFBG5FC211493-2015-jeep-grand-cherokee
2015 JEEP GRAND CHEROKEE
25 days ago, 117,902 mi
VIN 1C4RJFBG5FC211493
Frequently asked questions
Some models may depreciate faster due to factors like lower demand, higher maintenance costs, or outdated technology compared to newer versions.
Car depreciation is the decrease in value of a vehicle over time. It's a crucial factor to consider when calculating the total cost of vehicle ownership.
The exterior and interior condition of vehicles significantly affects their depreciation, as well-maintained vehicles generally retain more value.
By entering the VIN into a VIN decoder, you can check if there are any recalls specific to that 2023 INFINITI vehicle model and year based on its unique history.
Use as a police or taxi vehicle, if noted, indicates high-intensity use which may affect the 2023 INFINITI vehicle's condition and lifespan, if such use is documented.
A reconstructed title, if issued, indicates significant past repairs after severe damage, which can impact the 2023 INFINITI vehicle’s safety and value.
A VIN decoder is generally reliable for confirming the transmission type, as this information is encoded within the VIN by most manufacturers.
No, vehicle history reports do not include personal contact information of previous owners due to privacy regulations.
If the 2023 INFINITI was used as a taxi, this information may be noted in the vehicle history report, including the duration and any relevant details affecting its wear and tear, if reported.
Our reports may identify vehicles used for commercial purposes, detailing the extent of such use and its impact on the 2023 INFINITI's condition, if such records are available.
The information on vehicles provided here is supplied by third parties; BADVIN.ORG is not responsible for the accuracy of any information. BADVIN.ORG provides all service and materials without representations or warranties of any kind, either expressed or implied. Use BADVIN search and reports along with certified vehicle inspection and test drive. See Terms of Use for more details. All other logos, brands and designated trademarks are the property of their respective holders.