Try to enter your VIN above and see what we have for you.
5YJ3E1EA0PF451138-2023-tesla-model-3-0
BADVIN vehicle history report for

2023 TESLA MODEL 3VIN: 5YJ3E1EA0PF451138

Get FULL ACCESS to the vehicle history report and see all blurred info.
We accept PayPal and Stripe. Money-back guarantee if not satisfied.
Read 206+ reviews from our customers who used BADVIN to avoid buying junk vehicles.
Historical Records
events
Photos
12 images
Sales History
1 records
Sale Prices
1 records
VIN Decoder
56 entries
Market report
Price analytics

Historical Records

Historical records may include service and maintenance records, title status (clean, junk, salvage), insurance records, number of owners, registration events and states, and other information.
You can find more information about historical records in BADVIN reports and see more examples here.
Available historical records for VIN 5YJ3E1EA0PF451138
Latest reported mileage: 869 mi
Below you can see some examples of what these records could look like.
2023-04-15
a year ago
89,023 mi
SALVAGE TITLE/CERTIFICATE ISSUED
2021-09-27
3 years ago
22,832 mi
Accident reported
Vehicle involved in a sideswipe collision with another motor vehicle
Airbag deployed
2020-05-11
4 years ago
45,398 mi
Vehicle serviced
Maintenance inspection completed

Sale Record

Sale Date
a month ago
Buy Now Price
Odometer
5882 mi
Location
Torrance, CA, 90503
Year2023
ODO 9151 mi
SellerHidden text
Buy Now Price$2697
LocationTorrance, CA, 90503
Date
ended a month ago
Sale Website Typedealer auction
Notes
Hidden text
sale information provided by user #308249
All photos above are REAL and display ACTUAL car. After you get the report you will see full resolution photos.

Tech Specs
Body StyleSedan
TransmissionAutomatic
EngineElectric
DriveRWD
Fuel TypeElectric

Model Analytics & Market Report

We've analyzed more than 1,700 sales records of this model and here are some numbers.
The average price for new (MSRP) 2023 TESLA MODEL 3 in 2023 was $27,995.
The average price for used 2023 TESLA MODEL 3 nowadays in 2024 is $27,900 which is 100% from the original price.
Estimated mileage driven per year is 12,994 miles.
For this model we also have depreciation curve, photos, list of features and options, and other analytics.
Take a look at 2023 TESLA MODEL 3 model page in BADVIN vehicles catalog.

Depreciation

The graph below is a depreciation curve for 2023 TESLA MODEL 3. It shows how much this model looses per year in price. This analytics is calculated using sales records from BADVIN database.
The table below shows average price for used 2023 TESLA MODEL 3 in each year since the year of manufacturing, current year price and projected price in the future years.
You can scroll the table horizontally to see all columns.
YearAverage MileageAverage Price% Left% Lost
2023 MSRP0 mi$27,995100%0%
202425,988 mi$27,900+$0+0%99.66%0.34%
202538,982 mi$25,995+$1,905+6.83%92.86%7.14%
202651,976 mi$27,992−$1,997−7.68%99.99%0.01%
202764,970 mi$27,888+$104+0.37%99.62%0.38%
→ Visit 2023 TESLA MODEL 3 depreciation page to see full data.

Price vs Mileage

The graph below shows how mileage affects the price for 2023 TESLA MODEL 3. This data was calculated using sales records from BADVIN database.
The table below shows average price for used 2023 TESLA MODEL 3 by mileage and number of sales.
You can scroll the table horizontally to see all columns.
MileageAverage PriceSample Size
0 mi$35,99920 sales
5,000 mi$33,949122 sales
10,000 mi$33,000149 sales
15,000 mi$30,991118 sales
20,000 mi$28,885104 sales
25,000 mi$27,985138 sales
→ Visit 2023 TESLA MODEL 3 depreciation page to see full data.

VIN Decoder — 56 records

Active Safety System
Anti-lock Braking System (ABS)

Anti-lock Braking System (ABS) means a portion of a service brake system that automatically controls the degree of rotational wheel slip during braking by: (1) Sensing the rate of angular rotation of the wheels; (2) Transmitting signals regarding the rate of wheel angular rotation to one or more controlling devices that interpret those signals and generate responsive controlling output signals; and (3) Transmitting those controlling signals to one or more modulator devices that adjust brake actuating forces in response to those signals.

Standard
Auto-Reverse System for Windows and Sunroofs

An auto-reverse system enables power windows and sunroofs on motor vehicles to automatically reverse direction when such power windows and panels detect an obstruction. This feature can prevent children and others from being trapped, injured, or killed by the power windows and sunroofs.

Standard
Automatic Pedestrian Alerting Sound (for Hybrid and EV only)

Electric vehicle warning sounds are a series of sounds designed to alert pedestrians to the presence of electric drive vehicles such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs) travelling at low speeds. Vehicles operating in all-electric mode produce less noise than traditional combustion engine vehicles and can make it more difficult for pedestrians, the blind, cyclists, and others to be aware of their presence.

Standard
Electronic Stability Control (ESC)

ESC is a computerized technology that improves a vehicle's stability by detecting and reducing loss of traction (skidding). When ESC detects loss of steering control, it automatically applies the brakes to help steer the vehicle in the driver's intended direction. Braking is automatically applied to wheels individually, such as the outer front wheel to counter oversteer, or the inner rear wheel to counter understeer. Some ESC systems also reduce engine power until control is regained.

Standard
Event Data Recorder (EDR)

An EDR is a device installed in motor vehicles to record technical vehicle and occupant information for a brief period before, during, and after a triggering event, typically a crash or near-crash event. Sometimes referred to as "black-box" data, these data or event records can be valuable when analyzing and reconstructing crashes.

Standard
Keyless Ignition

A keyless ignition system permits starting a car without a physical key being inserted into an ignition. Instead, a small device known as a "key fob" transmits a code to a computer in the vehicle when the fob is within a certain close range. When the coded signal matches the code embedded in the vehicle's computer, a number of systems within the car are activated, including the starter system. This allows the car to be started by simply pressing a button on the dashboard while the key fob is left in a pocket or a purse. The vehicle is usually shut down by pushing the same button.

Standard
Tire Pressure Monitoring System (TPMS) Type

A TPMS is an electronic system designed to monitor the air pressure inside the pneumatic tires on various types of vehicles. TPMS can be divided into two different types - direct and indirect. Direct TPMS employ pressure sensors on each wheel, either internal or external. The sensors physically measure the tire pressure in each tire and report it to the vehicle's instrument cluster or a corresponding monitor. Indirect TPMS does not use physical pressure sensors but measure air pressures by monitoring individual wheel rotational speeds and other signals available outside of the tire itself.

Direct
Traction Control

When the traction control computer detects a driven wheel or wheels spinning significantly faster than another, it invokes an electronic control unit to apply brake friction to wheels spinning due to loss of traction. This braking action on slipping wheels will cause power transfer to the wheels with traction due to the mechanical action within the differential.

Standard
Active Safety System / 911 Notification
Automatic Crash Notification (ACN) / Advanced Automatic Crash Notification (AACN)

An ACN system notifies emergency responders that a crash has occurred and provides its location.

Standard
Active Safety System / Backing Up and Parking
Backup Camera

A backup camera, also known as a rearview video system, helps prevent back-over crashes and protects our most vulnerable people - children and senior citizens - by providing an image of the area behind the vehicle. A backup camera helps the driver see behind the vehicle while in reverse.

Standard
Parking Assist

A parking assist system uses computer processors, back up cameras, surround-view cameras, and sensors to assist with steering and other functions during parking. Drivers may be required to accelerate, brake, or select gear position. Some systems are capable of parallel and perpendicular parking. Drivers must constantly supervise this support feature and maintain responsibility for parking.

Optional
Rear Automatic Emergency Braking
A rear automatic braking system uses sensors, like parking sensors and the backup camera, to detect objects behind the vehicle. If the system detects a potential collision while in reverse, it automatically applies the brakes if a crash is imminent.
Standard
Rear Cross Traffic Alert

A rear cross traffic alert system warns the driver of a potential collision, while in reverse, which may be outside the view of the backup camera.

Standard
Active Safety System / Forward Collision Prevention
Crash Imminent Braking (CIB)

A CIB system is an automatic emergency braking system designed to detect an impending forward crash with another vehicle. CIB systems automatically apply the brakes in a crash imminent situation to slow or stop the vehicle, avoiding the crash or reducing its severity, if the driver does not brake in response to a forward collision alert.

Standard
Forward Collision Warning (FCW)

An FCW system monitors a vehicle's speed, the speed of the vehicle in front of it, and the distance between the vehicles. If the vehicles get too close due to the speed of either vehicle, the FCW system will warn the driver of the rear vehicle of an impending crash so that the driver can apply the brakes or take evasive action, such as steering, to prevent a potential crash. FCW systems provide an audible, visual, or haptic warning, or any combination thereof, to alert the driver of an FCW-equipped vehicle of a potential collision.

Standard
Pedestrian Automatic Emergency Braking (PAEB)

A PAEB system provides automatic braking for vehicles when pedestrians are in front of the vehicle and the driver has not acted to avoid a crash.

Standard
Active Safety System / Lane and Side Assist
Blind Spot Intervention (BSI)

BSI helps prevent a collision with a vehicle in the driver's blind spot. If the driver ignores the blind spot warning and starts to change to a lane where there's a vehicle, the system activates and automatically applies light braking pressure, or provides steering input, to guide the vehicle back into the original lane. The system monitors for vehicles in the driver's blind spot using rear-facing cameras or proximity sensors.

Standard
Blind Spot Warning (BSW)

BSW alerts drivers with an audio or visual warning if there are vehicles in adjacent lanes that the driver may not see when making a lane change.

Standard
Lane Centering Assistance

A lane centering assistance system utilizes a camera-based vision system designed to monitor the vehicle's lane position and automatically and continuously apply steering inputs needed to keep the vehicle centered within its lane.

Optional
Lane Departure Warning (LDW)

An LDW system monitors lane markings and alerts the driver if their vehicle drifts out of their lane without a turn signal or any control input indicating the lane departure is intentional. An audio, visual or other alert warns the driver of the unintentional lane shift so the driver can steer the vehicle back into its lane.

Standard
Lane Keeping Assistance (LKA)

An LKA system prevents a driver from unintentionally drifting out of the intended travel lane. LKA systems use information provided by Lane Departure Warning (LDW) system sensors to determine whether a vehicle is about to unintentionally move out of its lane of travel. If so, LKA activates and corrects the steering, brakes or accelerates one or more wheels, or does both, resulting in the vehicle returning to its intended lane of travel.

Standard
Active Safety System / Lighting Technologies
Adaptive Driving Beam (ADB)

ADB is a type of front-lighting system that lets upper beam headlamps adapt their beam patterns to create shaded areas around oncoming and preceding vehicles to improve long-range visibility for the driver without causing discomfort, distraction, or glare to other road users.

Standard
Daytime Running Light (DRL)

DRL is an automotive lighting system on the front of a vehicle or bicycle, that automatically switches on when the vehicle is in drive, and emits white, yellow, or amber light to increase the conspicuity of the vehicle during daylight conditions.

Standard
Headlamp Light Source

A headlamp light source provides a distribution of light designed to provide adequate forward and lateral illumination with limits on light directed towards the eyes of other road users, to control glare. This beam is intended for use whenever other vehicles are present ahead. Halogen, high-Intensity discharge (HID), light-emitting diode (LED), and laser are the most common headlights on the market.

LED
Semiautomatic Headlamp Beam Switching

A semi-automatic headlamp beam switching device provides automatic or manual control of beam switching at the option of the driver. When the control is automatic, the headlamps switch from the upper beam to the lower beam when illuminated by the headlamps on an approaching car and switch back to the upper beam when the road ahead is dark. When the control is manual, the driver may obtain either beam manually regardless of the condition of lights ahead of the vehicle.

Standard
Active Safety System / Maintaining Safe Distance
Adaptive Cruise Control (ACC)

ACC automatically adjusts the vehicle's speed to keep a pre-set distance from the vehicle in front of it.

Standard
Engine
Electrification Level

Electrification level defines to what level the vehicle is powered by electric system. The common electric system configurations are mild hybrid, strong hybrid, plug-in hybrid, battery electric, and fuel cell vehicles.

(1) Mild hybrid is the system such as 12-volt start-stop or 48-volt belt integrator starter generator (BISG) system that uses an electric motor to add assisting power to the internal combustion engine. The system has features such as stop-start, power assist, and mild level of generative braking features.

(2) Strong hybrid systems, in vehicles such as the Toyota Prius, mainly consist of motors, conventional gasoline engine, and battery, but the source of electrical charge for the battery power is provided by the conventional engine and/or regenerative braking.

(3) Plug-in hybrid systems, in vehicles such as the Toyota Rav4 Prime, mainly consist of motors, conventional gasoline engine and battery. Plug-in hybrid vehicles are like strong hybrids, but they have a larger battery pack and can be charged with an external source of electricity by electric vehicle supply equipment (EVSE).

(4) Battery electric vehicles (BEV), such as the Tesla Model S or Nissan Leaf, have only a battery and electrical motor components and use electricity as the only power source.

(5) Fuel cell electric vehicles (FCEV) use full electric drive platforms but consume electricity generated by onboard fuel cells and hydrogen fuel.

BEV (Battery Electric Vehicle)
Fuel Type - Primary

Fuel type defines the fuel used to power the vehicle. For vehicles that have two power sources, such as plug-in hybrid vehicle, both primary fuel type and secondary fuel type will be provided.

Electric
Other Engine Info

This is a catch-all field for storing additional engine information that does not fit in any of the other engine fields.

Single Motor – Standard / Performance
Exterior / Body
Body Class

Body Class presents the body type based on 49 CFR 565.12(b): "Body type means the general configuration or shape of a vehicle distinguished by such characteristics as the number of doors or windows, cargo-carrying features and the roofline (e.g., sedan, fastback, hatchback)." Definitions are not provided for individual body types in the regulation.

Sedan/Saloon
Doors

This is a numerical field to store the number of doors on a vehicle.

4
Exterior / Dimension
Gross Vehicle Weight Rating From

Gross vehicle weight rating (GVWR) is the maximum operating weight of a vehicle including the vehicle's chassis, body, engine, engine fluids, fuel, accessories, driver, passengers and cargo, but excluding that of the trailers. Per 49 CFR 565.15, Class 1 is further broken down to Class A-D; Class 2 is further broken down to Class E-H. This field captures the lower bound of GVWR range for the vehicle.

Class 1: 6,000 lb or less (2,722 kg or less)
Gross Vehicle Weight Rating To

Gross vehicle weight rating (GVWR) is the maximum operating weight of a vehicle including the vehicle's chassis, body, engine, engine fluids, fuel, accessories, driver, passengers and cargo, but excluding that of the trailers. Per 49 CFR 565.15, Class 1 is further broken down to Class A-D; Class 2 is further broken down to Class E-H. This field captures the higher bound of GVWR range for the vehicle.

Class 1: 6,000 lb or less (2,722 kg or less)
General
Make

Per 49 CFR 565, Make is a name that a manufacturer applies to a group of vehicles or engines.

TESLA
Manufacturer Name
Name of the vehicle manufacturer.
TESLA, INC.
Model

Per 49 CFR 565, Model means a name that a manufacturer applies to a family of vehicles of the same type, make, line, series and body type.

Model 3
Model Year

If the model year (MY) is supplied when the VIN is decoded, such as from a crash report or a vehicle registration record, the MY value will be the supplied MY, even if the MY decoded from the VIN differs from the supplied MY. If the MY is not supplied when the VIN is decoded, the MY value will be decoded from the 10th character in the VIN.

2023
Plant City

This data element captures the city of the manufacturing plant where the manufacturer affixes the VIN.

FREMONT
Plant Country

This data element captures the country of the manufacturing plant where the manufacturer affixes the VIN.

UNITED STATES (USA)
Plant State

This data element captures the State or Province name within the Plant Country of the manufacturing plant where the manufacturer affixes the VIN.

CALIFORNIA
Vehicle Type

This field defines the type of the vehicle based on the World Manufacturer Identifier (WMI).

PASSENGER CAR
Interior
Steering Location

This data element captures the location of steering column, either on left- (LHD) or right-hand side (RHD).

Left-Hand Drive (LHD)
Interior / Seat
Number of Seat Rows

This data element is a numeric field to capture the number of rows of seats in a vehicle.

2
Number of Seats

This data element is a numeric field to store the number of seats in a vehicle.

5
Internal
NCSA Body Type

An internal NHTSA field to capture the body type of the vehicle.

4-door sedan, hardtop
NCSA Make

An internal NHTSA field to capture the Make of the vehicle.

Other Domestic Manufacturers
NCSA Model

An internal NHTSA field to capture the Model of the vehicle.

Tesla
Mechanical / Battery
Battery Type

Battery type field stores the battery chemistry type for anode, cathode.

Lithium-Ion/Li-Ion
EV Drive Unit

EV Drive Unit field stores electric vehicle (EV) motor configuration for single or dual motor.

Single Motor
Mechanical / Transmission
Transmission Speeds

Transmission speed is a numerical field to capture the number of speeds for a transmission, such as 6 for a six-speed automatic or manual transmission.

1
Transmission Style

Transmission style provides information about the type of transmissions. The major types of transmissions are manual transmission, automatic transmission, continuously variable transmission (CVT), and dual-clutch transmission (DCT).

Automatic
Passive Safety System
Other Restraint System Info

Other Restraint Info field is used to code additional information about restraint system that cannot be coded in any other restraint fields.

Type 2 manual seatbelts (FR, SR*3) / PODS
Seat Belt Type

This field describes the type of seat belt, such as manual or automatic. Automatic seat belts automatically close over riders in a vehicle. Automatic seat belts were mainly used in some older model GM, Nissan, and Honda vehicles and are rarely seen now.

Manual
Passive Safety System / Air Bag Location
Front Air Bag Locations

This field captures the location of frontal air bags. Frontal air bags are generally designed to deploy in "moderate to severe" frontal or near-frontal crashes.

1st Row (Driver and Passenger)
Knee Air Bag Locations

This field captures the location of knee air bags, which deploy from a car's lower dashboard, are meant to distribute impact forces on an occupant's legs in the case of a crash, thereby reducing leg injuries.

1st Row (Driver and Passenger)
Side Air Bag Locations

This field captures the location of side air bags, typically designed for three areas of added protection: chest/torso, head, or both.

1st and 2nd Rows
Get FULL ACCESS to the vehicle history report and see all blurred info.
We accept PayPal and Stripe. Money-back guarantee if not satisfied.
Read 206+ reviews from our customers who used BADVIN to avoid buying junk vehicles.

Testimonials from our customers

I buy rebuilt title cars at copart to fix and resell. was hoping BadVin reports wud have more detail on damage history to help me value cars before bidding, Carfax is better for that. but for clean title vehicles it seems pretty useful
Was about to buy a used 2016 Camry but decided to get the badvin report first. Turns out the car had been in a serious crash and was declared a total loss by insurance, even tho carfax showed it as clean! Dodged a bullet on that one. ty badvin
As a broke college kid I almost settled for a sketchy 2005 Altima cuz it was cheap. but splurged on the report from badvin 1st. soooo glad I did - turned out it had been totalled and rebuilt. spending a little saved me from wasting $1000s!
Purchased a badvin report before buying a used Lexus RX 350. It revealed a minor accident the seller hadn't mentioned. I still bought the car but used the info to negotiate a lower price. Well worth the cost for the leverage it gave me!
Compare to other 2023 TESLA MODEL 3
5YJ3E1EA8PF435043-2023-tesla-model-3
2023 TESLA MODEL 3
a month ago, 16,606 mi
buy now price $30,500
VIN 5YJ3E1EA8PF435043
5YJ3E1EB8NF290530-2022-tesla-model-3
2022 TESLA MODEL 3
a month ago, 50,266 mi
buy now price $29,200
VIN 5YJ3E1EB8NF290530
5YJ3E1EA7PF426768-2023-tesla-model-3
2023 TESLA MODEL 3
a month ago, 24,294 mi
VIN 5YJ3E1EA7PF426768
5YJ3E1EA5NF369760-2022-tesla-model-3
2022 TESLA MODEL 3
a month ago, 15,846 mi
buy now price $29,500
VIN 5YJ3E1EA5NF369760
5YJ3E1EA1NF304369-2022-tesla-model-3
2022 TESLA MODEL 3
a month ago, 37,410 mi
buy now price $28,400
VIN 5YJ3E1EA1NF304369
5YJ3E1EB5NF289058-2022-tesla-model-3
2022 TESLA MODEL 3
a month ago, 40,264 mi
buy now price $30,400
VIN 5YJ3E1EB5NF289058
5YJ3E1EA3PF436827-2023-tesla-model-3
2023 TESLA MODEL 3
a month ago, 32,288 mi
buy now price $29,100
VIN 5YJ3E1EA3PF436827
5YJ3E1EBXNF287287-2022-tesla-model-3
2022 TESLA MODEL 3
a month ago, 42,708 mi
VIN 5YJ3E1EBXNF287287
5YJ3E1EA9NF190203-2022-tesla-model-3
2022 TESLA MODEL 3
a month ago, 75,347 mi
buy now price $24,600
VIN 5YJ3E1EA9NF190203
5YJ3E1EAXPF454595-2023-tesla-model-3
2023 TESLA MODEL 3
a month ago, 52,615 mi
buy now price $26,500
VIN 5YJ3E1EAXPF454595
5YJ3E1EA3PF449139-2023-tesla-model-3
2023 TESLA MODEL 3
a month ago, 30,280 mi
buy now price $28,700
VIN 5YJ3E1EA3PF449139
5YJ3E1EA5PF437090-2023-tesla-model-3
2023 TESLA MODEL 3
a month ago, 17,290 mi
VIN 5YJ3E1EA5PF437090
Other vehicles sales records
5J6TF1H52AL012775-2010-honda-crosstour
2010 HONDA CROSSTOUR
7 days ago, 103,078 mi
VIN 5J6TF1H52AL012775
JTMABABA7PA027033-2023-subaru-solterra
2023 SUBARU SOLTERRA
8 days ago, 6,323 mi
buy now price $28,200
VIN JTMABABA7PA027033
1GNSCSKD9PR265007-2023-chevrolet-tahoe
2023 CHEVROLET TAHOE
8 days ago, 39,540 mi
buy now price $53,000
VIN 1GNSCSKD9PR265007
5YJ3E1EA9PF429624-2023-tesla-model-3
2023 TESLA MODEL 3
8 days ago, 32,015 mi
buy now price $28,400
VIN 5YJ3E1EA9PF429624
W1K6G6DB4MA031391-2021-mercedes-benz-s-class
2021 MERCEDES-BENZ S-CLASS
8 days ago, 36,520 mi
buy now price $73,000
VIN W1K6G6DB4MA031391
1FMSK7FH4NGA30430-2022-ford-explorer
2022 FORD EXPLORER
8 days ago, 34,591 mi
VIN 1FMSK7FH4NGA30430
KMHTC6ADXCU042581-2012-hyundai-veloster
2012 HYUNDAI VELOSTER
8 days ago, 122,186 mi
buy now price $3,100
VIN KMHTC6ADXCU042581
1C6RR7MT7ES359035-2014-ram-1500
2014 RAM 1500
8 days ago, 114,366 mi
buy now price $22,600
VIN 1C6RR7MT7ES359035
1FTNE1YM8FKB31016-2015-ford-transit-connect
2015 FORD TRANSIT CONNECT
8 days ago, 183,875 mi
buy now price $13,000
VIN 1FTNE1YM8FKB31016
WBAAM3342YKC71229-2000-bmw-323i
2000 BMW 323I
6 days ago, 229,089 mi
buy now price $4,000
VIN WBAAM3342YKC71229
3KPF54AD7LE182635-2020-kia-forte
2020 KIA FORTE
8 days ago, 24,734 mi
buy now price $17,500
VIN 3KPF54AD7LE182635
WBS8M9C57J5K99163-2018-bmw-m3
2018 BMW M3
8 days ago, 60,349 mi
buy now price $52,500
VIN WBS8M9C57J5K99163
Frequently asked questions
A VIN decoder can help you find compatible parts for a 2023 TESLA vehicle by identifying the exact model, engine type, and other specifications crucial for parts compatibility.
Recall or defect reports, if available, indicate manufacturing flaws needing correction, impacting safety and possibly necessitating urgent repairs for the 2023 TESLA.
The best time of year to sell your car to minimize depreciation might be just before the release of a new model, when demand for used models could be higher.
Our reports may indicate if the 2023 TESLA served as a police vehicle, which involves rigorous usage patterns that are important for potential buyers to know, if such data is available.
Yes, a VIN decoder can often determine if specific safety technologies are equipped on a 2023 TESLA MODEL 3 based on the trim and optional equipment codes within the VIN.
Emission inspection status may show whether the 2023 TESLA vehicle has passed required state emissions testing, which is essential for registration in many areas, if such inspections have been documented.
Our reports may provide information on any open recalls affecting the 2023 TESLA MODEL 3, detailing the nature of the recall and recommended actions, if such records exist.
A VIN decoder can uncover discrepancies such as mismatches in reported and actual vehicle specifications, including year, model, and equipment, which can indicate potential fraud or errors in listings.
Yes, a VIN decoder can help identify if a 2023 TESLA MODEL 3 was previously stolen by accessing a database that records theft and recovery history.
The information on vehicles provided here is supplied by third parties; BADVIN.ORG is not responsible for the accuracy of any information. BADVIN.ORG provides all service and materials without representations or warranties of any kind, either expressed or implied. Use BADVIN search and reports along with certified vehicle inspection and test drive. See Terms of Use for more details. All other logos, brands and designated trademarks are the property of their respective holders.